当前位置: 主页 > 奇亿注册 > 网络营销
项目服务
  • 提交需求
  • 策划设计
  • 技术开发
  • 维护修改
  • 售后服务

Chinese Synonyms for Natural Language Processing and Understanding.

最好的中文近义词工具包。

可以用于自然语言理解的很多任务:文本对齐,推荐算法,相似度计算,语义偏移,关键字提取,概念提取,自动摘要,搜索引擎等。

chatoper banner

pip install -U synonyms

兼容py2和py3,当前稳定版本 v3.x

Node.js 用户可以使用 node-synonyms了。

npm install node-synonyms

本文档的配置和接口说明面向python工具包, node版本查看项目

支持使用环境变量配置分词词表和word2vec词向量文件。

环境变量 描述
SYNONYMS_WORD2VEC_BIN_MODEL_ZH_CN 使用word2vec训练的词向量文件,二进制格式。
SYNONYMS_WORDSEG_DICT 中文分词主字典,格式和使用参考

中文分词

import synonyms
synonyms.seg("中文近义词工具包")

分词结果,由两个list组成的元组,分别是单词和对应的词性。

(['中文', '近义词', '工具包'], ['nz', 'n', 'n'])

该分词不去停用词和标点。

import synonyms
print("人脸: %s" % (synonyms.nearby("人脸")))
print("识别: %s" % (synonyms.nearby("识别")))
print("NOT_EXIST: %s" % (synonyms.nearby("NOT_EXIST")))

返回一个元组,元组中包含两项:,是WORD的近义词们,也以list的方式存储,并且按照距离的长度由近及远排列,是中对应位置的词的距离的分数,分数在(0-1)区间内,越接近于1,代表越相近。比如:

synonyms.nearby(人脸)=(
    ["图片", "图像", "通过观察", "数字图像", "几何图形", "脸部", "图象", "放大镜", "面孔", "Mii"], 
    [0.597284, 0.580373, 0.568486, 0.535674, 0.531835, 0.530
095, 0.525344, 0.524009, 0.523101, 0.516046])

在OOV的情况下,返回 ,目前的字典大小: 125,792。

两个句子的相似度比较

    sen1="发生历史性变革"
    sen2="发生历史性变革"
    r=synonyms.compare(sen1, sen2, seg=True)

其中,参数 seg 表示 synonyms.compare是否对sen1 和 sen2进行分词,默认为 True。返回值:[0-1],并且越接近于1代表两个句子越相似。

旗帜引领方向 vs 道路决定命运: 0.429
旗帜引领方向 vs 旗帜指引道路: 0.93
发生历史性变革 vs 发生历史性变革: 1.0

以友好的方式打印近义词,方便调试,调用了 方法。

>>> synonyms.display("飞机")
'飞机'近义词:
  1. 架飞机:0.837399
  2. 客机:0.764609
  3. 直升机:0.762116
  4. 民航机:0.750519
  5. 航机:0.750116
  6. 起飞:0.735736
  7. 战机:0.734975
  8. 飞行中:0.732649
  9. 航空器:0.723945
  10. 运输机:0.720578

获得一个词语的向量,该向量为numpy的array,当该词语是未登录词时,抛出 KeyError异常。

>>> synonyms.v("飞机")
array([-2.412167  ,  2.2628384 , -7.0214124 ,  3.9381874 ,  0.8219283 ,
       -3.2809453 ,  3.8747153 , -5.217062  , -2.2786229 , -1.2572327 ],
      dtype=float32)

获得一个分词后句子的向量,向量以BoW方式组成

    sentence: 句子是分词后通过空格联合起来
    ignore: 是否忽略OOV,False时,随机生成一个向量

以“人脸”为例主要成分分析:

$ pip install -r Requirements.txt
$ python demo.py

更新情况说明

用户怎么说:

data is built based on wikidata-corpus.

《同义词词林》是梅家驹等人于1983年编纂而成,现在使用广泛的是哈工大社会计算与信息检索研究中心维护的《同义词词林扩展版》,它精细的将中文词汇划分成大类和小类,梳理了词汇间的关系,同义词词林扩展版包含词语7万余条,其中3万余条被以开放数据形式共享。

HowNet,也被称为知网,它并不只是一个语义字典,而是一个知识系统,词汇之间的关系是其一个基本使用场景。知网包含词语8余条。

国际上对词语相似度算法的评价标准普遍采用 Miller&Charles 发布的英语词对集的人工判定值。该词对集由十对高度相关、十对中度相关、十对低度相关共 30 个英语词对组成,然后让38个受试者对这30对进行语义相关度判断,最后取他们的平均值作为人工判定标准。然后不同近义词工具也对这些词汇进行相似度评分,与人工判定标准做比较,比如使用皮尔森相关系数。在中文领域,使用这个词表的翻译版进行中文近义词比较也是常用的办法。

Synonyms的词表容量是125,792,下面选择一些在同义词词林、知网和Synonyms都存在的几个词,给出其近似度的对比:

注:同义词林及知网数据、分数来源。Synonyms也在不断优化中,新的分数可能和上图不一致。

更多比对结果

Test with py3, MacBook Pro.

python benchmark.py

++++++++++ OS Name and version ++++++++++

Platform: Darwin

Kernel: 16.7.0

Architecture: ('64bit', '')

++++++++++ CPU Cores ++++++++++

Cores: 4

CPU Load: 60

++++++++++ System Memory ++++++++++

meminfo 8GB

52nlp.cn

机器之心

线上分享实录: Synonyms 中文近义词工具包 @ 2018-02-07

Synonyms发布证书 MIT。数据和程序可用于研究和商业产品,必须注明引用和地址,比如发布的任何媒体、期刊、杂志或博客等内容。

@online{Synonyms:hain2017,
  author={Hai Liang Wang, Hu Ying Xi},
  title={中文近义词工具包Synonyms},
  year=2017,
  url={https://github.com/huyingxi/Synonyms},
  urldate={2017-09-27}
}

wikidata-corpus

word2vec原理推导与代码分析

  1. 是否支持添加单词到词表中?

不支持,欲了解更多请看 #5

  1. 词向量的训练是用哪个工具?

Google发布的word2vec,该库由C语言编写,内存使用效率高,训练速度快。gensim可以加载word2vec输出的模型文件。

  1. 相似度计算的方法是什么?

详见 #64

Hai Liang Wang

Hu Ying Xi

Word2vec by Google

Wikimedia: 训练语料来源

gensim: word2vec.py

SentenceSim: 相似度评测语料

jieba: 中文分词

MIT

平台注册入口